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Abstract
Nonperturbative, oscillatory, winding number 1 solutions of the sine-Gordon
equation are presented and studied numerically. We call these nonperturbative
shape modes wobble solitons. Perturbed sine-Gordon kinks are found to decay
to wobble solitons.
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1. Introduction

The sine-Gordon equation was discovered in the study of constant negative curvature metric
spaces at the end of the nineteenth century [1]. It reappeared in physical problems dealing
with one-dimensional dislocations [2], long Josephson junctions and in other settings [3].

The sine-Gordon equation possesses solitary wave solutions. These solitary waves are
called solitons [4]. The equation is completely integrable and has an infinite number of
conserved currents [2, 5].

The solitons of the sine-Gordon theory carry a topological winding number q. Sine-
Gordon solitary waves are topological solitons. The winding number zero sector q = 0
supports bound soliton–antisoliton solutions, the breathers, as well as unbound soliton–
antisoliton pairs [2]. The q = 1 sector solitary wave is the kink soliton.

In the recent past, a controversy has arisen concerning the existence of oscillatory solutions
in the q = 1 sector. Shape modes were predicted by Rice [6] by means of a collective
coordinate method. Boesch and Willis [7] studied the excitation of this internal quasimode
using a more refined collective coordinate approach as well as numerical integration. The
predictions of both works are not exact, or even approximately so, due to the limitations of
the collective coordinate method. In the numerical and collective coordinate treatments, the
angular frequency of the oscillations of the kink soliton width was found to be above the
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threshold for the production of phonons. Phonons are the solutions of the Klein–Gordon
equation, obtained by linearizing the sine-Gordon equation [8]. Hence, if this oscillation
exists, it is embedded in the continuum and must decay, albeit with a small decay constant for
angular frequencies near threshold.

Quintero et al [9] have recently contested the existence of this shape mode. They have
argued that the numerical solution of Boesch and Willis [7] is incorrect. Quintero et al [9]
suggest that this quasimode is nothing more than a numerical effect due to discretization. In
discrete nonlinear equations, a mode in the continuum can sink below threshold depending on
the value of the lattice constant [10].

In the present work, we show analytical nonperturbative solutions to the sine-Gordon
equation that are oscillatory and apparently stable, which we call the wobble solitons. The
wobble solitons are derived by means of the inverse scattering transform (IST) method
following Lamb [2] and Segur [11]. The IST method produces soliton solutions based on
scattering data of Schrödinger-like equations. The data lead to a potential—hence the name
inverse scattering transform—from which the soliton is derived. The expression for the wobble
soliton we derive corrects the one given by Segur [11]. The solution will be depicted and
checked analytically as well as numerically.

The angular frequency of the oscillation of the wobble is found to range between zero
and 1, where the phonon continuum takes over. There is no gap in the frequency spectrum. A
dense set of nonperturbative nonlinear wobbles fills it. We also touch upon the stability issue.

Having shown the existence and probable stability of the wobble, we connect to the
problem of shape oscillations in distorted kinks. We recover the results of Boesch and Willis
[7] and point out a probable source of error in the numerical calculations of Quintero et al
[9]. The shape modes found in the literature are shown to be an intermediate stage on the way
between distorted kinks and wobbles.

The next section summarizes the IST derivation of the wobble [2, 11] and addresses the
stability issue. Section 3 deals with the distorted kink problem and the controversy around
the existence of a kink shape mode in the sine-Gordon equation. Conclusions are presented
in section 4.

2. The wobble by the inverse scattering method

The powerful technique of the inverse scattering transform [2] connects nonlinear equations,
such as the Korteweg–deVries (KdV), sine-Gordon, nonlinear Schrödinger, modified KdV,
etc, and linear eigenvalue equations, such as the Schrödinger or Dirac-like two-component
equations. The nonlinear equations arise as consistency conditions on the linear equations.
The potentials of the linear equations yield solutions of the nonlinear equation. The method
uses the scattering data of the linear problem to predict the nonlinear solution by resorting to
an integral equation discovered by Gelfand et al [12].

In the case of reflectionless potentials, for which there are only transmitted waves in
the linear problem, the Gelfand–Levitan–Marchenko equations are integrable in closed form.
The analytical formulae are given by Lamb [2]. Segur [11] implemented these formulae
for the case of what we presently call the wobble. The sine-Gordon soliton composed of a
kink and a breather, the wobble u(x, t) with its centre at rest, is given by

u(x, t) = 4 Im(ln(det(I + iM)), (1)

where Ii,j , i, j = 1, 3 is the unit matrix , and Mi,j is the matrix containing scattering data of
the kink and the breather,

Mj,k = −imk

ζj + ζk

eθ , θ = −i(ζj + ζk)
x + t

2
+ i

x − t

4ζk

, (2)
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where ζ1 = i/2, ζ2 = α + iβ, ζ3 = −α + iβ, with α2 + β2 = 0.25 and β > 0 are the scattering
amplitudes: ζ1 for the q = 1 kink and ζ2,3 for the q = 0 breather. mj are the normalization
constants for each matrix element, with m1 real and m∗

2 = m3. The wobble depends on the
parameters m2 = (m2R,m2I ),m1, β. A moving soliton can be obtained by boosting with a
Lorentz transformation. We here focus on a wobble at rest.

Defining the complex function

F = det(I + iM) = V + iW, (3)

we find1

V (x, t) = 1 +
|m2|2

(
1
4 − β2

)
β2

e4βx − 2m1|m2|
(

1
2 − β

)
1
2 + β

ex+2βx cos(2α(t + t0)),

W(x, t) = −m1|m2|2
(

1
2 − β

)3

β2
(

1
2 + β

) ex+4βx − m1 ex + 2|m2| e2βx cos(2α(t + t0)),

(4)

where
2

|m2| tan(2αt0) = m2I β + m2Rα

m2I α − m2Rβ
. (5)

The wobble is obtained by inserting equation (4) in equation (1).
As shown below, the wobble oscillates sweeping over values above 2π . In numerical codes

that limit the inverse tangent to the principal branch, it is imperative to use the complex natural
logarithm expression of equation (1), instead of the translation Imag(ln(F )) = tan−1

(
W
V

)
.

The q = 1 kink is recovered from the wobble of equations (1), (4) by setting m2 = (0, 0).
The q = 0 breather requires the substitution m1 = 0.

The normalization constant m1 determines the location of the centre of the wobble, m2

fixes the amplitude of the oscillation and the phase. The angular frequency of the oscillation
is ω = 2α, with upper bound ωmax = 1, at which the phonon spectrum begins [13, 8].

An alternative simpler form of F = V + iW is

V (x, t) = 2e2βx(eµ cosh(2βx + µ) − |m2| ex+λ−µ cos(2α(t + t0))),

W(x, t) = 2e2βx(−m1 ex+λ cosh(2βx + λ) + |m2| cos(2α(t + t0))),
(6)

where

eλ = |m2|
|β|

√√√√(
1
2 − β

)3

1
2 + β

, eµ = |m2|
|β|

√
1

4
− β2.

It is an arduous but straightforward task to show that the wobble obeys the renormalized
sine-Gordon equation2,

∂2u

∂t2
− ∂2u

∂x2
+ sin(u) = 0, (7)

derivable from the renormalized Lagrangian

L =
∫

dx

[(
∂u

∂t

)2

−
(

∂u

∂x

)2

+ (cos(u) − 1)

]
, (8)

with renormalized energy

E = 8 + 32β. (9)

1 Equation (4) corrects the results of Segur [11].
2 We have verified equation (6) using computerized algebra.
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Figure 1. Wobble as a function of distance: m1 = −1,m2 = (0.6, 0.7), β = 0.2.

The remarkable IST method has yielded a new nonlinear solution of the sine-Gordon
equation built from a q = 1 kink and a q = 0 breather, a nonperturbative oscillatory shape
mode of the kink.

Figure 1 shows snapshots of the wobble at times comprising one oscillation period. As
equation (6) implies, the curves show oscillations that are not simple harmonic. The insets in
figure 1 show the wobble at t = 0 and an identical picture after 19 periods.

The numerical integration code we used is based on the leapfrog method. The calculation
used double precision variables with a fixed time step of dt = 0.01 and a flexible space
grid. One measure of the integration accuracy is the conservation of the energy. The error
in the energy was demanded never to exceed 0.2%. The other measure consisted of an
exact match with the analytical formulae of equation (6) for long times. Figure 2 shows
one such comparison for the wobble parameters of figure 1 at t = 137 amounting to 13 700
iterations of the numerical code. The ordinate is the absolute value of the percentage relative
deviation of the numerical results u(x, t)num from the analytical formula of equation (1)
u(x, t)form, ε = 100 abs

(
u(x,t)num−u(x,t)form

u(x,t)form

)
. The abscissa spans the region where the results

are relevant. Below x = 25 the wobble is negligible and the comparison is irrelevant. The
errors very rarely exceed 1%.

The stability problem of distorted solitons under large perturbations has not been settled
yet, even for the case of the breather [14]. The study of wobble stability can be circumscribed
to the analysis of its development for α, β violating the unitarity condition α2 +β2 = 1

4 . These
parameters belong to the breather sector of the wobble.

Initially, we addressed the stability problem by using a limited set of collective coordinates,
promoting the parameters to be time dependent. Unfortunately, the method failed to predict
the observed behaviour. Even the frequency of the unperturbed breather or wobble cannot be
recovered by means of the collective coordinate approach.

We therefore proceeded to investigate the question of stability of both the breather
and the wobble by means of numerical simulations. We scanned the parameter ranges
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Figure 2. ε as a function of distance for the wobble parameters of figure 1.
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Figure 3. Long time behaviour of an initially distorted breather: m1 = 0, m2 = (0.6, 0.7), β =
0.2, α(t = 0) = 0.858, α(t → ∞) = 0.314.

−∞ < α < ∞,−0.5 < β < 0.5, omitting the |β| > 0.5 region, for which the distorted
breather and wobble decay by emission of soliton–antisoliton pairs.

Figure 3 shows a typical case for the breather, and figure 4 one for the wobble. After a
transient that depends on the magnitude of the distortion, both distorted breathers and wobbles
eventually settle down at a nearby, lower energy, stable breather or wobble. The excess energy
is emitted by means of a trail of phonons both in the forward and backward directions, as seen
in the insets of figures 3 and 4. The trail of phonons resembles an Airy function. The pictures
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Figure 4. Long time behaviour of an initially distorted wobble: m1 = 1, m2 = (0.6, 0.7), β = 0.2,

α(t = 0) = 0.858, α(t → ∞) = 0.314.

in figures 3 and 4 repeat themselves for longer and longer times. The relaxation time was
found to be of the order of τ = 1

|α(t = 0) −α(t → ∞)| . For t < τ , the parameters of the wobble and
the breather change with time. At around t = τ , α and β obey again the unitarity constraint
and the wobble and breather do not decay appreciably any more. It appears that α → ∞
depends only on the breather dynamics.

3. Distorted kinks and the wobble

The existence of a shape mode in the q = 1 sector of the sine-Gordon equation has
been surrounded by controversy. The results of the previous section show that there are
nonperturbative oscillatory shape modes in the q = 1 kink sector. The wobble angular
frequency spectrum fills the gap between the zero mode and the phonon spectrum. The
wobble is an exact solution, whereas the phonon spectrum results from approximate linearized
solutions of the sine-Gordon equation around the kink soliton. The wobble must play a role
in the decay dynamics of distorted kinks. As we will see below, the shape mode found in the
literature is an intermediate stage on the way from the distorted kink to a stable wobble.

Rice [6], and later Boesch and Willis [7] proposed the existence of shape modes for
distorted kinks in the sine-Gordon equation. The angular frequency of the oscillations of
the kink soliton width found by Rice [6] and Boesch and Willis [7] lies above the phonon
threshold of ω = 1. The shape mode is therefore unstable to decay into phonons. Recently,
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Figure 5. Distorted kink width γ of equation (10) as a function of time. Fitted values of
equation (11), full curve; input data, dashed curve.

Quintero et al [9] have argued that such a shape mode does not exist. Quintero et al [9]
claim that the behaviour observed in the work of Boesch and Willis [7] is due to discretization
effects in the numerical calculation. They base their hypothesis on a work by Kivshar et al
[10]. Kivshar et al [10] predict the birth of shape modes bifurcating from the continuum
spectrum of phonons that plunge below threshold upon the application of perturbations. For
the unperturbed integrable sine-Gordon equation the effect disappears in the continuum, when
lattice spacing tends to zero. Kivshar et al [10] state that there are no shape modes for
integrable equations. The results of the previous section show that there is a whole set of
nonperturbative shape modes in the sine-Gordon equation.

In order to connect the wobble soliton to perturbed kinks, we followed the evolution of a
distorted kink

u(x, t) = 4 tan−1(eγ x), (10)

with |γ − 1| the distortion parameter. γ (t) is extracted from the data by comparing to
equation (10). The phenomenological function

γ (t) = 1 + a e−tbc cos(2αt + φ), (11)

captures the broad features of γ (t). From equation (11) we obtained the angular frequency of
the oscillation, α. We found that α varies with time. There is a slow drift of α towards lower
values. This is depicted in figure 5. The angular frequency α of equation (11) drops from
2α = 1.048 at around t = 200 to 2α = 1.0015 later. Both the amplitude of the oscillation and
the frequency diminish gradually. The results of figure 5 agree in general with that of Boesch
and Willis [7]. However, contrary to the predictions of the collective coordinate method of
Rice [6], the frequency is not constant.

We consider now the numerical simulations of Quintero et al [9]. They use an insufficient
extent for the x-axis L = |xmax| = 100 that does not prevent the reabsorption of reflected
phonons from the boundary. These phonons pump back energy into the oscillating soliton and
blur the picture. The velocity of propagation of the phonons is v = k√

k2 + 1
, asymptotically

tending towards v = 1. Using this asymptotic value, the reflected phonons collide and feed
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Figure 6. Distorted kink width γ of equation (10) as a function of time. Full curve: fitted values.
Dashed curve: numerical input.

energy back to the soliton at t ≈ 200. In figure 2 of [9], and at approximately that time, the
decaying single frequency shape mode picture starts to break down.

Increasing the span of the integration region with time prevents the reabsorption of
phonons. The slowly drifting single frequency behaviour is seen to persist for longer and
longer times. Whether the oscillation frequencies cross the threshold of ω = 1, signalling the
transition to a stable shape mode looks unclear from the previous figures. To accelerate the
decay process a very distorted kink is needed. Figure 6 shows a case with γ (t = 0) = 0.4, a
distortion of 60% compared to the unperturbed kink. (The distorted kink energy for this γ is
E = 11.6 still below the threshold for the production of a soliton–antisoliton pair at E = 24.)
The angular frequency is now 2α = 0.97 for short times. A long wavelength modulation of
the amplitude is also noticeable in figure 6. After t = 600, the amplitude of the oscillation
appears to stabilize.

As α was obtained by means of a phenomenological function, more convincing evidence
of the transition to a wobble-like regime is necessary.

A distorted kink cannot be put in exact correspondence with the wobble, despite the
similarities. The energy of equation (9) teaches us that β is the relevant parameter for the
breather admixture to the kink. Expanding the expression for the wobble of equation (1)
around β = 0 we find γ (t = 0) ≈ 1 − 8β. The factor of 8 and the unitarity constraint that

fixes the angular frequency to be α =
√

1
4 − β2 require an extremely distorted kink in order

to reach a fairly visible frequency below threshold. A stronger distortion than γ (t = 0) = 0.4
as compared to that depicted in figure 6 is necessary.

We therefore considered initial distortions with γ (t = 0) < 0.4. For such a large initial
distortion, the decaying kink profile no longer matched equation (10). The extraction of a
clean distortion parameter γ (t) became impossible. The time evolution of the highly distorted
kinks leads to a completely different object. Figure 7 shows distorted kinks for γ (t = 0) = 0.3
at around t = 290. The profiles resemble very much the wobbles in figure 1.

From the graphs one can read off the value of the angular frequency of the oscillation
to be 2α ≈ 0.92, well below the phonon threshold. The inset shows phonons receding from
the centre; others propagating forward are not shown. We performed long time numerical
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integrations up to t = 1000 and did not see any sizeable decay of the amplitude of the
wobble-like kink.

The kink appears to be decaying to a wobble. If this is indeed the case, we should be able
to identify the wobble parameters of the decaying distorted kink.

To limit the number of free parameters, we first considered the x → ∞ region for both
the distorted kink and the wobble. The wobble has an asymptotic behaviour of e2|β|x , whereas
for the distorted kink it is eγ x . If the asymptotic behaviour does not change with time, we
have γ ≈ 2β. From this value of β and the unitarity constraint, α is determined. This
α = π

T
with T the oscillation period, can be readily compared to the numerical results of

figure 7. The agreement is fair, but not satisfactory. Following the reverse path seemed more
appropriate. The oscillation period of the numerical data fixes α and consequently β by means
of the unitarity constraint. There remained three unknown parameters m1,m2R,m2I that were
determined using a minimization algorithm.

The results are depicted in figure 8. All the distorted kinks of figure 7 were reproduced
with the same parameter set. The agreement with the data is remarkable, especially so in
light of the highly nonlinear wobble function. Long distance discrepancies are due to phonon
contributions.

The highly distorted kink has transformed into a wobble and a wake of phonons. The less
distorted cases presumably need a much longer time to reach a wobble. For small distortions
of the kink, it is hard to discern a clear wobble shape. However, we cannot rule out completely
the possibility of a distorted kink decaying to an undistorted kink and phonons. In future work
we plan to address this and other related problems.

4. Conclusions

We have shown that there exists a set of wobbling, apparently stable, nonperturbative solutions
to the sine-Gordon equation in the q = 1 sector. Highly distorted kinks eventually decay to
wobbles and phonons. The results are relevant to the investigation of scattering events of
sine-Gordon kinks from impurities. Other nonlinear equations that support breathers, such as
the modified KdV equation, may also bear wobble solutions.

The existence of the wobble may have technological implications. Wobbles produced in
Josephson junctions could carry analogical information with relative stability.
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